second plaque contained a more secular quote from Tennyson: “F OR I DIPPED INTO THE FUTURE, FAR AS MY EYES COULD SEE / S AW THE VISION OF THE WORLD AND ALL THE WONDER THAT WOULD BE .”
That was also a nice thought to bear in mind while describing our research goals.
The irony was that the room was arranged so that we “witnesses” from the science world—who already were sympathetic to these statements—faced the plaques, which hung directly in our line of view. The representatives, on the other hand, sat underneath the words so they couldn’t see them. Congressman Lipinski, who in opening statements said that discoveries inspire more questions—and large metaphysical inquiries—acknowledged that he used to notice the plaques but they were now all too easy to forget. “Few of us ever look up there.” He expressed his gratitude for being reminded.
Moving on from the decor, we scientists turned to the task at hand—explaining what it is that makes this such an exciting and unprecedented era for particle physics and cosmology. Although the representatives’ questions were occasionally pointed and skeptical, I could appreciate the resistance they constantly face in explaining to their constituents why it would be a mistake to stop funding scientific work—even in the face of economic uncertainties. Their questions ranged from details about the purposes of specific experiments to broader issues concerning the role of science and where it is heading.
In between the absences of the representatives, who periodically had to leave to vote, we gave some examples of the side benefits accrued by advancing fundamental science. Even science intended as basic research often proves fruitful in other ways. We talked about Tim Berners-Lee’s development of the World Wide Web as a means of letting physicists in different countries collaborate more readily on their joint experiments at CERN. We discussed medical applications, such as PET scans—positron emission tomography—a way of probing internal body structure with the electron’s antiparticle. We explained the role of the industrial-scale production of superconducting magnets that were developed for colliders but now are used for magnetic resonance imaging as well, and finally the remarkable application of general relativity to precision predictions, including the global positioning systems we use daily in our cars.
Of course significant science doesn’t necessarily have any immediate benefit in practical terms. Even if there is an ultimate pay-off, we rarely know about it at the time of the discovery. When Benjamin Franklin realized lightning was electricity, he didn’t know electricity soon would change the face of the planet. And when Einstein worked on general relativity, he didn’t anticipate it would be used in any practical devices.
So the case we made that day was focused primarily not on specific applications, but rather on the vital importance of pure science. Though the status of science in America might be precarious, many people currently recognize its worth. Society’s view of the universe, time, and space changed with Einstein—as the original lyrics of “As Time Goes By” quoted in Warped Passages attest to. 3 Our very language and thoughts change as our understanding of the physical world develops and as new ways of thinking progress. What scientists study today and how we go about this will be critical both to our understanding of the world and to a robust and thoughtful society.
We are currently living in an extraordinarily exciting era for physics and cosmology, with some of the edgiest investigations ever proposed. Through a wide-ranging set of explorations, Knocking on Heaven’s Door touches on our different ways of understanding the world—through art, religion, and science—but chiefly with a focus on the goals and methods of modern physics. Ultimately, the very tiny objects we study are integral to discovering who we are and where