world. This section explains the Higgs mechanism responsible for elementary particle masses as well as the hierarchy problem that tells us we should find more. It also investigates models that address this problem and the exotic new particles they predict, such as those associated with supersymmetry or extra dimensions of space.
Along with presenting specific hypotheses, this part explains how physicists go about constructing models and the efficacy of guiding principles such as “truth through beauty” and “top-down” versus “bottom-up.” It explains what the LHC is searching for, but also how physicists anticipate what it might find. This part describes how scientists will try to connect the seemingly abstract data the LHC will produce to some of the deep and fundamental ideas that we currently investigate.
Following our tour of research into the interior of matter, we’ll look outward in Part V At the same time as the LHC probes the tiniest scales of matter, satellites and telescopes explore the largest scales in the cosmos—studying the rate at which its expansion accelerates—and also study details of the relic radiation from the time of the Big Bang. This era could witness astounding new developments in cosmology , the science of how the universe evolved. In this section, we’ll explore the universe out to larger scales and discuss the particle physics–cosmology connection, as well as the elusive dark matter and experimental searches for it.
The final roundup in Part VI reflects on creativity, and the rich and varied elements of thought that enter into creative thinking. It examines how we attempt to answer the big questions through the somewhat smaller seeming activities we engage in on a day-to-day basis. We’ll conclude with some final thoughts on why science and scientific thinking are so important today, as well as the symbiotic relationship between technology and scientific thinking that has produced so much progress in the modern world.
I am frequently reminded how tricky it can be for non-scientists to appreciate the sometimes remote ideas that modern science addresses. This challenge became apparent when I met with a class of college students following a public lecture I gave about extra dimensions and physics. When I was told they all had the same pressing question, I expected some confusion about dimensions, but instead learned that they were eager to know my age. But lack of interest isn’t the only challenge—and the students actually did go on to engage with the scientific ideas. Still, there is no denying that fundamental science is often abstract, and justifying it can be difficult—a hurdle I had to face at a congressional hearing about the importance of basic science that I attended in the fall of 2009 along with Dennis Kovar, director of High Energy Physics at the U.S. Department of Energy; Pier Oddone, director of the Fermi National Accelerator Laboratory; and Hugh Montgomery, director of Jefferson Lab, a nuclear physics facility. This was my first time in the halls of government since my congressman, Benjamin Rosenthal, took me around when I was a high school finalist in the Westinghouse Science Competition many years before. He generously provided me with more than the mere photo op that the other finalists had received.
During my more recent visit, I again enjoyed observing the offices where policy is made. The room dedicated to the House Committee on Science and Technology is in the Rayburn House Office Building. The representatives sat in the back and we “witnesses” sat facing them. Inspirational plaques hung above the representatives’ heads, the first of which read “W HEN THERE IS NO VISION THE PEOPLE PERISH . P ROVERBS 29:18.”
It seems American government must refer to scripture even in the congressional room explicitly dedicated to science and technology. The line nonetheless expresses a noble and accurate sentiment, which we all would like to apply.
The