new theoretically predicted particles and hopefully some surprises—the energy where the force known as the “weak interaction” hides its secrets.
The stakes are high. Peering into the unknown for the first time, anything could happen. There are scads of competing theoretical models hoping to anticipate what the LHC will find. You don’t know what you’re going to see until you look. At the center of the speculation lies the Higgs boson, an unassuming particle that represents both the last piece of the Standard Model, and the first glimpse into the world beyond.
A big universe made of little pieces
Near the Pacific coast in Southern California, about an hour-and-a-half drive south of where I live in Los Angeles, there is a magical place where dreams come to life: Legoland. At Dino Island, Fun Town, and other attractions, children marvel at an elaborate world constructed from Legos, tiny plastic blocks that can be fitted together in limitless combinations.
Legoland is a lot like the real world. At any moment, your immediate environment typically contains all sorts of substances: wood, plastic, fabric, glass, metal, air, water, living bodies. Very different kinds of things, with very different properties. But when you look more closely, you discover that these substances aren’t truly distinct from one another. They are simply different arrangements of a small number of fundamental building blocks. These building blocks are the elementary particles. Like the buildings in Legoland, tables and cars and trees and people represent some of the amazing diversity you can achieve by starting with a small number of simple pieces and fitting them together in a variety of ways. An atom is about one-trillionth the size of a Lego block, but the principles are similar.
We take for granted the idea that matter is made of atoms. It’s something we’re taught in school, where we do chemistry experiments in classrooms with the periodic table of the elements hanging on the wall. It’s easy to lose sight of how amazing that fact is. Some things are hard, some are soft; some things are light, some are heavy; some things are liquid, some are solid, some are gas; some things are transparent, some are opaque; some things are alive, some are not. But beneath the surface, all these things are really the same kind of stuff. There are about one hundred atoms listed in the periodic table, and everything around us is just some combination of those atoms.
The hope that we can understand the world in terms of a few basic ingredients is an old idea. In ancient times, a number of different cultures—Babylonians, Greeks, Hindus, and others—invented a remarkably consistent set of five “elements” out of which everything else was made. The ones we are most familiar with are earth, air, fire, and water, but there was also a heavenly fifth element of aether, or quintessence. (Yes, that’s where the movie with Bruce Willis and Milla Jovovich got its name.) Like many ideas, this one was developed into an elaborate system by Aristotle. He suggested that each element sought a particular natural state; for example, earth tends to fall and air tends to rise. By mixing the elements in different combinations, we could account for the different substances we see around us.
Democritus, a Greek philosopher who predated Aristotle, originally suggested that everything we know is made of certain tiny indivisible pieces, which he called “atoms.” It’s an unfortunate accident of history that this terminology was seized upon by John Dalton, a chemist who worked in the early 1800s, to refer to the pieces that define chemical elements. What we now think of as an atom is not indivisible at all—it consists of a nucleus made of protons and neutrons, around which orbit a collection of electrons. Even the protons and neutrons aren’t indivisible; they are made of smaller pieces called “quarks.”
The quarks and electrons are the real atoms, in