up by another retroactive intercurrency account readjustment. She knew that Sawlinski had plenty of rubles in his research budget; but, without his budget authorization and his personal approval to the computer (by the crypto-password that she knew, but dared not use), she was reduced to waiting and hand-processing until he returned.
Actually, it was fun working with the numbers in this personal way. With the computer doing the analysis, the numbers would be crammed into digital bins whether they were real data or noise, and right now there was a lot of scruffy noise on the graph.
The data Jacqueline was analyzing came from the low frequency radio detectors on the old CCCP-ESA Out-of-the-Ecliptic probe that was the first major cooperative effort between the Soviets and Europeans. Back in the early days of the race to the Moon, the Europeans had supplied the first Soviet lunar rover with laser retroreflectors. Then, after a disastrous experience with the Americans in which one of America’s four precious Shuttle spacecraft and Europe’s only SpaceLab had exploded on the launch pad, the Europeans had turned back to the East for cooperation. The Europeans built the instrumentation for an Out-of-the-Ecliptic spacecraft that was launched by one of the giant Russian launch vehicles. The craft first traveled five astronomical units out to Jupiter. But once there, instead of taking pictures and going on to other planets as previous spacecraft had done, it went under Jupiter’s south pole- to shoot straight up out of the plane formed by the orbits of the planets.
As the spacecraft climbed up out of the ecliptic plane, its sensors began to see a new picture of the Sun.The magnetic fields that blossomed out from the sunspots at the middle latitudes of the Sun were now attenuated, while new effects began to dominate the scene.
The data from the CCCP-ESA Out-of-the-Ecliptic probe had been thoroughly analyzed by many well-funded scientific groups early in the mission. The information gathered had shown that the Sun had a case of indigestion. It had eaten too many black holes.
The scientists found an extremely periodic fluctuation in the strength of the Sun’s polar magnetic field. The magnetosphere of the Sun had many variations, of course. Each sunspot was a major source of variability. However, sunspots were irregular in time and were so strong in the middle latitudes that they dominated everything. It was not until the OE probe was above the Sun, sampling data for long periods of time, that the finely detailed, highly periodic variations in the radio flux were found and interpreted as periodic variations in the Sun’s magnetosphere. It was finally concluded that the Sun had four dense masses, probably miniature primordial black holes, orbiting around each other deep inside the sun. These disturbed the Sun’s normal fusion equilibrium by gnawing away at its bowels. The effect of the black holes on the Sun would become serious in a few million years, but all they did now was bring on an occasional ice age.
Although the human race realized that the Sun was not a reliable source of energy for the long term, there was little they could do about it. After a short flurry of national and international concern over the “death of the Sun,” the human race settled down to solving the insoluble problem in the best way that they knew—they ignored it and hoped it would go away.
It was now two decades later. Miraculously, one of the two communication transmitters on the satellite and three of the experiments were still running. Oneof them was the low frequency radio experiment. Its output was sprawled across a table and clown a computation-lab floor, slowly being marked up by the swift, slender fingers of a determined graduate student.
“Damn! Here comes the scruff again,” Jacqueline muttered to herself as she slid the long sheet across the table and noticed that the slowly varying trace with the complex sinusoidal pattern began