thinkings and doings—from evolution to radiography, general relativity to the discovery of germs and anesthesia, behaviorism to psychoanalysis—then why ever not in the principles of thought itself?
In Arthur Conan Doyle’s own estimation, Sherlock Holmes was meant from the onset to be an embodiment of the scientific, an ideal that we could aspire to, if never emulate altogether (after all, what are ideals for if not to be just a little bit out of reach?). Holmes’s very name speaks at once of an intent beyond a simple detective of the old-fashioned sort: it is very likely that Conan Doyle chose it as a deliberate tribute to one of his childhood idols, the philosopher-doctor Oliver Wendell Holmes, Sr., a figure known as much for his writing as for his contributions to medical practice. The detective’s character, in turn, was modeled after another mentor, Dr. Joseph Bell, a surgeon known for his powers of close observation. It was said that Dr. Bell could tell from a single glance that a patient was a recently discharged noncommissioned officer in a Highland regiment, who had just returned from service in Barbados, and that he tested routinely his students’ own powers of perception with methods that included self-experimentation with various noxious substances. To students of Holmes, that may all sound rather familiar. As Conan Doyle wrote to Bell, “Round the centre of deduction and inference and observationwhich I have heard you inculcate, I have tried to build up a man who pushed the thing as far as it would go—further occasionally. . . .” It is here, in observation and inference and deduction, that we come to the heart of what it is exactly that makes Holmes who he is, distinct from every other detective who appeared before, or indeed, after: the detective who elevated the art of detection to a precise science.
We first learn of the quintessential Sherlock Holmes approach in A Study in Scarlet , the detective’s first appearance in the public eye. To Holmes, we soon discover, each case is not just a case as it would appear to the officials of Scotland Yard—a crime, some facts, some persons of interest, all coming together to bring a criminal to justice—but is something both more and less. More, in that it takes on a larger, more general significance, as an object of broad speculation and inquiry, a scientific conundrum, if you will. It has contours that inevitably were seen before in earlier problems and will certainly repeat again, broader principles that can apply to other moments that may not even seem at first glance related. Less, in that it is stripped of any accompanying emotion and conjecture—all elements that are deemed extraneous to clarity of thought—and made as objective as a nonscientific reality could ever be. The result: the crime as an object of strict scientific inquiry, to be approached by the principles of the scientific method. Its servant: the human mind.
What Is the Scientific Method of Thought?
When we think of the scientific method, we tend to think of an experimenter in his laboratory, probably holding a test tube and wearing a white coat, who follows a series of steps that runs something like this: make some observations about a phenomenon; create a hypothesis to explain those observations; design an experiment to test the hypothesis; run the experiment; see if the results match your expectations; rework your hypothesis if you must; lather, rinse, and repeat. Simple seeming enough. But how to go beyond that? Can we train our minds to work like that automatically, all the time?
Holmes recommends we start with the basics. As he says in our first meeting with him, “Before turning to those moral and mental aspects ofthe matter which present the greatest difficulties, let the enquirer begin by mastering more elementary problems.” The scientific method begins with the most mundane seeming of things: observation. Before you even begin to ask the questions that will define
Dale C. Carson, Wes Denham