pages that follow I portray a diverse set of computer scientists, hackers, roboticists, and neuroscientists. They share a growing sense that we are approaching an inflection point where humans will live in a world of machines that mimic, and even surpass, some human capabilities. They offer a rainbow of sensibilities about our place in this new world.
During the first half of this century, society will be tasked with making hard decisions about the smart machines that have the potential to be our servants, partners, or masters. At the very dawn of the computer era in the middle of the last century, Norbert Wiener issued a warning about the potential of automation: “We can be humble and live a good life with the aid of the machines,” he wrote, “or we can be arrogant and die.”
It is still a fair warning.
John Markoff
San Francisco, California
January 2015
1 | BETWEEN HUMAN AND MACHINE
B ill Duvall was already a computer hacker when he dropped out of college. Not long afterward he found himself face-to-face with Shakey, a six-foot-tall wheeled robot. Shakey would have its moment in the sun in 1970 when Life magazine dubbed it the first “electronic person.” As a robot, Shakey fell more into the R2-D2 category of mobile robots than the more humanoid C-3PO of Star Wars lore. It was basically a stack of electronic gear equipped with sensors and motorized wheels, first tethered, then later wirelessly connected to a nearby mainframe computer.
Shakey wasn’t the world’s first mobile robot, but it was the first one that was designed to be truly autonomous. An early experiment in artificial intelligence (AI), Shakey was intended to reason about the world around it, plan its own actions, and perform tasks. It could find and push objects and move around in a planned way in its highly structured world. Moreover, as a harbinger of things to come, it was a prototype for much more ambitious machines that were intended to live, in military parlance, in “a hostile environment.”
Although the project has now largely been forgotten, the Shakey designers pioneered computing technologies today used by more than one billion people. The mapping software in everything from cars to smartphones is based on techniques that were first developed by the Shakey team. Their A* algorithm is the best-known way to find the shortest path between two locations. Toward the end of the project, speech control was added as a research task, and today Apple’s Siri speech service is a distant descendant of the machine that began life as a stack of rolling actuators and sensors.
Duvall had grown up on the Peninsula south of San Francisco, the son of a physicist who was involved in classified research at Stanford Research Institute, the military-oriented think tank where Shakey resided. At UC Berkeley he took all the computer programming courses the university offered in the mid-1960s. After two years he dropped out to join the think tank where his father worked, just miles from the Stanford campus, entering a cloistered priesthood where the mainframe computer was the equivalent of a primitive god.
For the young computer hacker, Stanford Research Institute, soon after renamed SRI International, was an entry point into a world that allowed skilled programmers to create elegant and elaborate software machines. During the 1950s SRI pioneered the first check-processing computers. Duvall arrived to work on an SRI contract to automate an English bank’s operations, but the bank had been merged into a larger bank, and the project was put on an indefinite hold. He used the time for his first European vacation and then headed back to Menlo Park to renew his romance with computing, joining the team of artificial intelligence researchers building Shakey.
Like many hackers, Duvall was something of a loner. In high school, a decade before the movie