largest galaxy. However, being a child, I didn’t understand that perhaps there was a link between the carp swimming in the Tea Garden and the unfinished papers lying on Einstein’s desk. I didn’t understand that higher dimensions might be the key to solving the unified field theory.
Later, in high school, I exhausted most of the local libraries and often visited the Stanford University physics library. There, I came across the fact that Einstein’s work made possible a new substance called antimatter, which would act like ordinary matter but would annihilate upon contact with matter in a burst of energy. I also read that scientists had built large machines, or “atom smashers,” that could produce microscopic quantities of this exotic substance in the laboratory.
One advantage of youth is that it is undaunted by worldly constraints that would ordinarily seem insurmountable to most adults. Not appreciating the obstacles involved, I set out to build my own atom smasher. I studied the scientific literature until I was convinced that I could build what was called a betatron, which could boost electrons to millions of electron volts. (A million electron volts is the energy attained by electrons accelerated by a field of a million volts.)
First, I purchased a small quantity of sodium-22, which is radioactive and naturally emits positrons (the antimatter counterpart of electrons). Then I built what is called a cloud chamber, which makes visible the tracks left by subatomic particles. I was able to take hundreds of beautiful photographs of the tracks left behind by antimatter. Next, I scavenged around large electronic warehouses in the area, assembled the necessary hardware, including hundreds of pounds of scrap transformer steel, and built a 2.3-million-electron-volt betatron in my garage that would be powerful enough to produce a beam of antielectrons. To construct the monstrous magnets necessary for the betatron, I convinced my parents to help me wind 22 miles of cooper wire on the high-school football field.We spent Christmas vacation on the 50-yard line, winding and assembling the massive coils that would bend the paths of the high-energy electrons.
When finally constructed, the 300-pound, 6-kilowatt betatron consumed every ounce of energy my house produced. When I turned it on, I would usually blow every fuse, and the house would suddenly became dark. With the house plunged periodically into darkness, my mother would often shake her head. (I imagined that she probably wondered why she couldn’t have a child who played baseball or basketball, instead of building these huge electrical machines in the garage.) I was gratified that the machine successfully produced a magnetic field 20,000 times more powerful than the earth’s magnetic field, which is necessary to accelerate a beam of electrons.
Confronting the Fifth Dimension
Because my family was poor, my parents were concerned that I wouldn’t be able to continue my experiments and my education. Fortunately, the awards that I won for my various science projects caught the attention of the atomic scientist Edward Teller. His wife generously arranged for me to receive a 4-year scholarship to Harvard, allowing me to fulfill my dream.
Ironically, although at Harvard I began my formal training in theoretical physics, it was also where my interest in higher dimensions gradually died out. Like other physicists, I began a rigorous and thorough program of studying the higher mathematics of each of the forces of nature separately, in complete isolation from one another. I still remember solving a problem in electrodynamics for my instructor, and then asking him what the solution might look like if space were curved in a higher dimension. He looked at me in a strange way, as if I were a bit cracked. Like others before me, I soon learned to put aside my earlier, childish notions about higher-dimensional space. Hyperspace, I was told, was not a suitable subject of serious
Tim Lahaye, Jerry B. Jenkins