conditions to distinguish one being from another and to make the definiens or definer coextensive with the definiendum or definee , so that, if ANIMAL RATIONAL MORTAL, therefore of necessity human, and vice versa.
Once more, however, in its canonical version, this tree reveals its inadequacy, because it distinguishes, in a logically satisfactory fashion, God from man, but not, let’s say, a man from a horse. If we had to define the horse, the tree would have to be enriched with further disjunctions: we would need, for example, to divide ANIMALS into mortal and immortal, and the next species down—that of MORTAL ANIMALS—into rational (men) and irrational (horses, for instance), even though, unfortunately, this subdivision, as is apparent in Figure 1.3 , would not allow us to distinguish horses from donkeys, cats, or dogs.
Figure 1.3
Even if we were willing to pay this price, however, we still could not reintroduce God into the tree. The only solution would be to insert the same difference twice (at least) under two different genera ( Figure 1.4 ).
Figure 1.4
Porphyry would not have discouraged this decision, given that he himself says (18.20) that the same difference “can often be observed in different species, such as having four legs in many animals that belong to different species.” 6
Aristotle too said that when two or more genera are subordinate to a superior genus (as occurs in the case of the man and the horse, insofar as they are both animals), there is nothing to prevent them having the same differences ( Categories 1b 15 et seq.; Topics VI, 164b 10). In the Posterior Analytics (II, 90b et seq.), Aristotle demonstrates how one can arrive at an unambiguous definition of the number 3. Given that the number 1 was not a number for the Greeks (but the source and measure of all the other numbers), 3 could be defined as that odd number that is prime in both senses (that is, neither the sum nor the product of other numbers). This definition is fully reciprocable with the expression three. But it is interesting to reconstruct in Figure 1.5 the process of division by which Aristotle arrives at this definition.
Figure 1.5
This type of division shows how properties like not the sum and not the product (which are differences) are not exclusive to any one disjuncture but can occur under several nodes. The same pair of dividing differences, then, can occur under several genera. Not only that, but the moment a certain difference has proved useful in defining a certain species unambiguously, it is no longer important to consider all the other subjects of which it is equally predicable (which amounts to saying that, once one or more differences have served to define the number 3, it is irrelevant that it may occur in the definition of other numbers). 7 Once we have said, then, that, given several subordinate genera, nothing prevents them having the same differences, it is difficult to say how many times the same pair of differences can occur.
In his Topics too (VI, 6, 144b), Aristotle admitted that the same difference may occur twice under two different genera (as long as they are not subordinate): “the earthbound animal and the flying animal are in fact genera not contained the one within the other, even though the notion of two-leggedness is the difference of both.” 8
If the same difference can recur a number of times, the finiteness and logical purity of the tree—which runs the risk of exploding into a dust cloud of differences, reproduced identically under different genera—are compromised. Indeed, if we reflect that species are a combination of genus and difference, and the genus higher up is in its turn a combination of another genus plus a difference (and therefore genera and species are abstractions, intellectual figments which serve to sum up various organizations of differences or accidents), the most logical solution would be for the tree to be made up solely of differences, properties that can
BWWM Club, Shifter Club, Lionel Law