Tags:
General,
science,
History,
Biography & Autobiography,
Biography,
Renaissance,
Art,
Italy,
Artists; Architects; Photographers,
Science & Technology,
To 1500,
Leonardo,
16th Century,
Individual Artists,
Scientists,
Science; Renaissance,
Scientists - Italy - History - to 1500,
Scientists - Italy - History - 16th Century
“embraces within itself all the forms of nature.” 3 This statement, in fact, is the key to understanding Leonardo’s science. He asserts repeatedly, especially in his early manuscripts, that painting involves the study of natural forms, and he emphasizes the intimate connection between the artistic representation of those forms and the intellectual understanding of their intrinsic nature and underlying principles. For example, in the collection of his notes on painting, known as
Trattato della pittura (Treatise on Painting)
, he writes:
The science of painting extends to all the colors of the surfaces of bodies, and to the shapes of the bodies enclosed by those surfaces…. [Painting] with philosophic and subtle speculation considers all the qualities of forms…. Truly this is science, the legitimate daughter of nature, because painting is born of nature. 4
For Leonardo, painting is both an art and a science—a science of natural forms, of qualities, quite different from the mechanistic science that would emerge two hundred years later. Leonardo’s forms are living forms, continually shaped and transformed by underlying processes. Throughout his life he studied, drew, and painted the rocks and sediments of the earth, shaped by water; the growth of plants, shaped by their metabolism; and the anatomy of the animal (and human) body in motion.
THE NATURE OF LIFE
Nature as a whole was alive for Leonardo. He saw the patterns and processes in the microcosm as being similar to those in the macrocosm. He frequently drew analogies between human anatomy and the structure of the Earth, as in the following beautiful passage from the Codex Leicester:
We may say that the Earth has a vital force of growth, and that its flesh is the soil; its bones are the successive strata of the rocks which form the mountains; its cartilage is the porous rock, its blood the veins of the waters. The lake of blood that lies around the heart is the ocean. Its breathing is the increase and decrease of the blood in the pulses, just as in the Earth it is the ebb and flow of the sea. 5
While the analogy between microcosm and macrocosm goes back to Plato and was well known throughout the Middle Ages and the Renaissance, Leonardo disentangled it from its original mythical context and treated it strictly as a scientific theory. Today we know that some of the analogies in the passage quoted above are flawed, and in fact Leonardo himself corrected some of them late in his life. 6 However, we can easily recognize Leonardo’s statement as a forerunner of today’s Gaia theory—a scientific theory that views the earth as a living, self-organizing, and self-regulating system. 7
At the most fundamental level, Leonardo always sought to understand the nature of life. This has often escaped earlier writers, because until recently the nature of life was defined by biologists only in terms of cells and molecules, to which Leonardo, living two centuries before the invention of the microscope, had no access. But today, a new systemic understanding of life is emerging at the forefront of science—an understanding in terms of metabolic processes and their patterns of organization. And those are precisely the phenomena Leonardo explored throughout his life.
A SYSTEMIC THINKER
Leonardo da Vinci was what we would call, in today’s scientific parlance, a systemic thinker. 8 Understanding a phenomenon, for him, meant connecting it with other phenomena through a similarity of patterns. When he studied the proportions of the human body, he compared them to the proportions of buildings in Renaissance architecture. His investigations of muscles and bones led him to study and draw gears and levers, thus interlinking animal physiology and engineering. Patterns of turbulence in water led him to observe similar patterns in the flow of air; and from there he went on to explore the nature of sound, the theory of music, and the design of musical instruments.
This
JJ Carlson, George Bunescu, Sylvia Carlson