each as heavy as around 8,000 electrons. The chance of such a massive particle being wildly deflected from its path was about as great as that of a real express train being derailed by a runaway dolls pram. As Rutherford put it: “It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you!”
Geiger and Marsden’s extraordinary result could only mean that an atom was not a flimsy thing at all. Something buried deep inside it could stop a subatomic express train dead in its tracks and turn it around. That something could only be a tiny nugget of positive charge sitting at the dead centre of an atom and repelling the positive charge of an incoming alpha particle. Since the nugget was capableof standing up to a massive alpha particle without being knocked to kingdom come, it too must be massive. In fact, it must contain almost all of the mass of an atom.
Rutherford had discovered the atomic nucleus.
The picture of the interior of the atom that emerged was as unlike Thomson’s plum pudding picture as was possible to imagine. It was a miniature solar system in which negatively charged electrons were attracted to the positive charge of the nucleus and orbited it like planets around the Sun. The nucleus had to be at least as massive as an alpha particle—and probably a lot more so—for the nucleus with which it collided not to be kicked out of the atom. It therefore had to contain more than 99.9 per cent of the atom’s mass. 3
The nucleus was very, very tiny. Only if nature crammed a large positive charge into a very small volume could a nucleus exert a repulsive force so overwhelming that it could make an alpha particle execute a U-turn. What was most striking about Rutherford’s vision of an atom was, therefore, its appalling emptiness. The playwright Tom Stoppard put it beautifully in his play Hapgood: “Now make a fist, and if your fist is as big as the nucleus of an atom then the atom is as big as St Paul’s, and if it happens to be a hydrogen atom then it has a single electron flitting about like a moth in an empty cathedral, now by the dome, now by the altar.”
Despite its appearance of solidity, the familiar world was actually no more substantial than a ghost. Matter, whether in the form of a chair, a human being, or a star, was almost exclusively empty space.What substance an atom possessed resided in its impossibly small nucleus—100,000 times smaller than a complete atom.
Put another way, matter is spread extremely thinly. If it were possible to squeeze out all the surplus empty space, matter would take up hardly any room at all. In fact, this is perfectly possible. Although an easy way to squeeze the human race down to the size of a sugar cube probably does not exist, a way does exist to squeeze the matter of a massive star into the smallest volume possible. The squeezing is done by tremendously strong gravity, and the result is a neutron star. Such an object packs the enormous mass of a body the size of the Sun into a volume no bigger than Mount Everest. 4
THE IMPOSSIBLE ATOM
Rutherford’s picture of the atom as a miniature solar system with tiny electrons flitting about a dense atomic nucleus like planets around the Sun was a triumph of experimental science. Unfortunately, it had a slight problem. It was totally incompatible with all known physics!
According to Maxwell’s theory of electromagnetism—which described all electrical and magnetic phenomena—whenever a charged particle accelerates, changing its speed or direction of motion, it gives out electromagnetic waves—light. An electron is a charged particle. As it circles a nucleus, it perpetually changes its direction; so it should act like a miniature lighthouse, constantly broadcasting light waves into space. The problem is that this would be a catastrophe for any atom. After all, the energy radiated as light has to come from somewhere, and it can only come from the electron itself.
[edited by] Bart D. Ehrman