instance of a major mathematical advance initiated by a man past fifty.â Middle-aged mathematicians often fade into the background and occupy their remaining years teaching or administrating rather than researching. In the case of Andrew Wiles nothing could be further from the truth. Although he had reached the grand old age of forty he had spent the last seven years working in complete secrecy, attempting to solve the single greatest problem in mathematics. While others suspected he had dried up, Wiles was making fantastic progress, inventing new techniques and tools which he was now ready to reveal. His decision to work in absolute isolation was a high-risk strategy and one which was unheard of in the world of mathematics.
Without inventions to patent, the mathematics department of any university is the least secretive of all. The community prides itself in an open and free exchange of ideas and tea-time breaks have evolved into daily rituals during which concepts are shared and explored over biscuits and Earl Grey. As a result it is increasingly common to find papers being published by co-authors or teams of mathematicians and consequently the glory is shared out equally. However, if Professor Wiles had genuinely discovered a complete and accurate proof of Fermatâs Last Theorem, then the most wanted prize in mathematics was his and his alone. The price he had to pay for his secrecy was that he had not previously discussed or tested any of his ideas with the mathematics community and therefore there was a significant chance that he had made some fundamental error.
Ideally Wiles had wanted to spend more time going over his work to allow him to check fully his final manuscript. Then the unique opportunity arose to announce his discovery at the Isaac Newton Institute in Cambridge and he abandoned caution. The sole aim of the instituteâs existence is to bring together the worldâsgreatest intellects for a few weeks in order to hold seminars on a cutting-edge research topic of their choice. Situated on the outskirts of the university, away from students and other distractions, the building is especially designed to encourage the academics to concentrate on collaboration and brainstorming. There are no dead-end corridors in which to hide and every office faces a central forum. The mathematicians are supposed to spend time in this open area, and are discouraged from keeping their office doors closed. Collaboration while moving around the institute is also encouraged â even the elevator, which only travels three floors, contains a blackboard. In fact every room in the building has at least one blackboard, including the bathrooms. On this occasion the seminars at the Newton Institute came under the heading of â
L
-functions and Arithmeticâ. All the worldâs top number theorists had been gathered together in order to discuss problems relating to this highly specialised area of pure mathematics, but only Wiles realised that
L
-functions might hold the key to solving Fermatâs Last Theorem.
Although he had been attracted by having the opportunity to reveal his work to such an eminent audience, the main reason for making the announcement at the Newton Institute was that it was in his home town, Cambridge. This was where Wiles had been born, it was here he grew up and developed his passion for numbers, and it was in Cambridge that he had alighted on the problem which was to dominate the rest of his life.
The Last Problem
In 1963, when he was ten years old, Andrew Wiles was already fascinated by mathematics. âI loved doing the problems in school, Iâdtake them home and make up new ones of my own. But the best problem I ever found I discovered in my local library.â
One day, while wandering home from school, young Wiles decided to visit the library in Milton Road. It was rather impoverished compared with the libraries of the colleges, but nonetheless it had a generous collection of